You

how can | rewrite this program so | can have 3 leds that turn on and off in a sequence from machine
import Pin, Timer

led = Pin(25, Pin.OUT)

timer = Timer()

def blink(timer):
led.toggle()

timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

To modify your program to control three LEDs so they turn on and off in sequence rather than just
toggling a single LED, you'll need to adjust your approach. Since you want a sequence, using a timer
to toggle each LED in turn is a good strategy, but you'll manage the sequence by cycling through the

LEDs in your callback function rather than just toggling one.

Here's a revised version of your program that achieves this with three LEDs. This example assumes
the LEDs are connected to GPIO pins 25, 26, and 27, but you can adjust these pin numbers based on

your actual setup:

python

Copy code

from machine import Pin, Timer
Define LEDs

led1 = Pin(25, Pin.OUT)

led2 = Pin(26, Pin.OUT)
led3 = Pin(27, Pin.OUT)

List to hold LEDs for easy access
leds = [led1, led2, led3]

Index to keep track of the current LED
current_led = 0

def blink(timer):

global current_led # Use the global variable to keep track across calls

Turn off all LEDs
for led in leds:
led.value(0)

Turn on the current LED
leds[current_led].value(1)

Move to the next LED in the sequence, wrapping around if necessary
current_led = (current_led + 1) % len(leds)

Initialize the timer
timer = Timer()

Timer configuration
timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink)

This program defines three LEDs and stores them in a list for easy access. The b1ink function, called
by the timer, turns off all LEDs, turns on the current one, then increments the index to point to the

next LED in the sequence, wrapping around to the first LED after the last one has been lit.

The freq parameter in the timer.init call determines how often the b1ink function is called. With a
frequency of 2.5 Hz, the b11ink function is called 2.5 times per second, cycling through the LEDs in

sequence at this rate.
You can adjust the freq value to make the sequence faster or slower according to your needs.

You
Can you make me have a button that when | press it, the sequence starts

ChatGPT
Certainly! To start the LED sequence when a button is pressed, you'll need to add code to handle

button press events. This involves setting up an interrupt on the button's pin that triggers a function
to start the LED sequence. We'll assume the button is connected to GPIO pin 28, but you can adjust

this to the actual pin you're using.

Here's how you can modify the program to start the LED sequence with a button press:

python
Copy code

from machine import Pin, Timer

Define LEDs
led1 = Pin(25, Pin.OUT)

led2 = Pin(26, Pin.OUT)
led3 = Pin(27, Pin.OUT)
leds = [led1, led2, led3] # List of LEDs for easy access

Initialize variables
current_led = @ # Index for the current LED in sequence
sequence_started = False # Flag to indicate whether sequence has started

Timer for LED sequence
timer = Timer ()

def blink(timer):

global current_led

if sequence_started: # Only run sequence if started

for led in leds:

led.value(@) # Turn off all LEDs

leds[current_led].value(1) # Turn on the current LED

current_led = (current_led + 1) % len(leds) # Move to the next LED

def start_sequence(pin):

global sequence_started

sequence_started = True # Set flag to start sequence

timer.init(freq=2.5, mode=Timer.PERIODIC, callback=blink) # Start timer for LED
sequence

Define button
button = Pin(28, Pin.IN, Pin.PULL_DOWN)

Interrupt for button press
button.irq(trigger=Pin.IRQ_RISING, handler=start_sequence)

In this version, the sequence is controlled by the sequence started flag. This flag is set to True
when the button is pressed, activating the timer's callback to begin the sequence. The
start_sequence function is tied to the button press via an interrupt (irq). The interrupt is configured
to trigger on a rising edge (pin.TRQ RISING), Which occurs when the button is pressed (assuming

the button is connected to ground and pulls the pin high when pressed).

The rin.puLL_pown configuration for the button ensures that the pin is normally pulled low (to 0) and
is considered pressed when it goes high (to 1). This setup might need to be adjusted depending on

your actual button wiring.

This program will start cycling the LEDs in sequence when the button is pressed. If you want the
sequence to stop when the button is pressed again or have other controls over the sequence, you

would need to add additional logic to handle those cases.

You
the button is normally connected to 3v of power, is not a pull down

ChatGPT
If your button is normally connected to 3V and is not configured as a pull-down, but rather it

connects the input pin to ground when pressed, you should configure the button pin with an internal
pull-up resistor. This means the pin is normally high (at 3V) and goes low (to ground) when the

button is pressed.

Here's how to adjust the program to work with a button that is connected in this manner:

python
Copy code

from machine import Pin, Timer

Define LEDs

led1 = Pin(25, Pin.OUT)
led2 = Pin(26, Pin.OUT)
led3 = Pin(27, Pin.OUT)
leds = [led1, led2, led3] # List of LEDs for easy access

Initialize variables
current_led = @ # Index for the current LED in sequence
sequence_started = False # Flag to indicate whether sequence has started

Timer for LED sequence
timer = Timer()

def blink(timer):
global current_led
if sequence_started: # Only run sequence if started

for led in leds:

led.value(@) # Turn off all LEDs

leds[current_led].value(1) # Turn on the current LED

current_led = (current_led + 1) % len(leds) # Move to the next LED

def start_sequence(pin):

global sequence_started

Toggle the sequence start/stop

sequence_started = not sequence_started

if sequence_started:

timer.init(freq=2.5, mode=Timer .PERIODIC, callback=blink) # Start timer for LED
sequence

else:

timer.deinit() # Stop the timer and thereby the sequence

for led in leds: # Turn off all LEDs when sequence is stopped
led.value(®)

Define button with internal pull-up resistor
button = Pin(28, Pin.IN, Pin.PULL_UP)

Interrupt for button press
button.irq(trigger=Pin.IRQ_FALLING, handler=start_sequence)

Key Changes:

e The button is configured with pin.PuLL,_up, ensuring the pin is normally high and becomes
low when the button is pressed (since pressing the button connects it to ground).

e The interrupt trigger is changed to pin. 1RO FALLING, Which means the interrupt is triggered
on the falling edge (transition from high to low), corresponding to a button press in this
setup.

e The start seqguence function now toggles the sequence started flag. If the sequence is
started, it initializes the timer and begins blinking the LEDs. If the button is pressed again, it
stops the sequence by deinitializing the timer and turns off all the LEDs.

This setup will allow you to start and stop the LED sequence by pressing the button, with the button

connected to 3V and grounding the pin when pressed.

